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Using electrostatic identities the potential and microfield in a plasma, important 
for determining line shapes, are expressed as limits of local quantities. These are 
shown to be well defined for typical configurations of macroscopic, i.e., infinite 
systems (under some mild clustering assumptions). Their covariance contains a 
slowly decaying part (Ix1-1, for the potential) whose coefficient is universal 
whenever the Stillinger-Lovett second moment condition holds. We show fur- 
ther that the contributions from distant regions (which are equal to suitable 
averages over local regions) have a Gaussian distribution. 

KEY WORDS: Coulomb systems; potential fluctuations; microfield distri- 
bution; particle correlations; sum rules; clustering. 

1. INTRODUCTION 

We investigate the fluctuations of the potential and electric field in a 
classical system of charged particles in three dimensions. Knowledge of the 
distribution of the electric field, usually referred to as the microfield, is 
important for understanding the structure of charged systems and for 
determining the shape of spectral lines emitted by a neutral or partially 
ionized atom (radiator) in a plasma. (1~ 

The line shape problem was first considered by Holtsmark (2) and 
Margenau, (3) who developed the statistical theory of line broadening. Their 
computation of the microfield distribution neglected all correlations be- 
tween the charges and much effort has since been devoted to improving the 
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resulting Holtsmark distribution. (2'3-9) An important input into the approxi- 
mation scheme used in Ref. 9 which appears to give the best agreement 
with computer simulations, is the exact value of the second moment of the 
electric field distribution at a charged ion in a one-component plasma 
(jellium). This shows the usefulness of exact relations for the microfield 
distribution and is one of the motivations of the present work. 

In carrying out this analysis, it is necessary, owing to the long-range 
nature of the Coulomb potential, that careful attention be paid to the 
(infinite volume) limits required for defining the microfield in a macro- 
scopic (formally infinite) charged system. It is the purpose of this note to 
prove, under some reasonable assumptions, the existence of these limits and 
to derive expressions (involving only low-order particle correlations) for the 
covarianee of the field at different points in space. We hope that this will be 
useful both for the development of a general theory of Gibbs states of 
charged systems, as well as for developing microfield distributions in a 
manner similar to that of Ref. 9 in a general plasma. 

We note here that in some cases, e.g., for high temperature and 
low-density plasmas, for charges on a lattice, for fully symmetric systems, 
our results follow, more or less explicitly, from first principle computations 
without any additional assumptions. (l~ Another special case is the one- 
component plasma, jellium, in two dimensions at one particular tempera- 
ture T =  2e2/Ks. At this value the correlations are known (~) and the 
whole analysis can be carried out explicitly. This as well as the general 
two-dimensional case will be discussed in a paper by Alastuey and Jan- 
covici.(~2) 

Formulation of Problem 

We consider a system of N charged classical particles at equilibrium in 
a finite volume A c R3. A particle of species ~ carries a charge e~ and we 
may have an additional uniform external charge density O~ (jellium model). 
The system is globally neutral 

N 
% +  IAIo~ = 0 (1,1) 

i= l  

where IAI is the volume of A. 
The particles interact by a two-body potential 

~ ( q l  ,q2) -- IX 1 __ X21 n k * s ( q l ' 9 2 )  (1.2)  

where we use the abbreviated notation q = (a, x), x denoting the position of 
the particle. 
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~,S(ql,q2 ) is a short-range potential, invariant under translations and 
rotations, which includes the local repulsion effects needed for thermody- 
namic stability. 

The equilibrium state of the system at inverse temperature fl is 
described by the set of its correlation functions PA(ql . . . . .  q~) defined in 
the canonical ensemble, and we write <F>A for the thermal average of a 
function F on configuration space. 

Of particular importance is the (truncated) charge-charge correlation 
function 

S~(x,,x~)=<[ Q(x)]A[ Q(y)]A>A 
= ~ e,~,e,~2[PA(a,x, , a 2 x 2 )  - pa(a,x,)pa(a2x2) 

O/iO~ 2 

where 

(1.3) 

N 

Q(x) = ~ e,~fi(x - xi) + p,~ (1.4) 
i = 1  

is the charge density, and for any F we have set 

I F ] a =  F -  <F>A (1.5) 

The charge neutrality condition (1.1) implies that 

fAdx2 SA(x ~ , x2) = 0 for all x~ (1.6) 

The electrostatic potential at some point of space x, due to a given 
particle configuration (q, . . . .  , q,) in A, is 

V ( x ) = ~ d Y  ~x l~7[ Q(y  ) (1.7) 

E(x) = - V V(x) is the corresponding electric field. We are interested in the 
fluctuations of the potential 

WA(x, y) = <[ v(x)],,[ v(y)]A>~ 

1 1  ' ' = dx, dy, Ix -xt[ [y -y~[  Sa(x'  ' y ' )  (1.8) 

and more generally in the characteristic function 

< exp i V(Xk A 7k E N (1.9) 

of the distribution of the potential as A--> R 3. Even more important in 
many cases are the corresponding fluctuations in the electric field E(x). 



290 Lebowitz and Martin 

We note that for particles with short-range interactions (for instance 
with finite range d), the total potential and field are strictly local quantities, 
i.e., V(x) depends only on the part of the particle configuration which is in 
a sphere of radius d around x. In this case, the infinite volume limits of 
(1.8) and (1.9) exist as soon as the state [i.e., the correlations functions 
OA(ql . . . . .  qn)] has a thermodynamic limit, and thus potential and force 
fluctuations are well defined. This is not the case for the Coulomb poten- 
tial: here V(x) is genuinely nonlocal and particles far away will contribute 
to the fluctuations at x. 

In this paper, we do not prove the existence of the limit (1.8) and (1.9) 
as A ~ R3. Rather, by assuming some reasonable properties of the thermo- 
dynamic limit and of the bulk correlation functions, we derive various 
results about the behavior of the potential and electric field correlations 
which should generally hold in a large class of Coulomb states. Under these 
conditions, we mainly establish the following points. 

Owing to some electrostatic identities which we derive in Section 2, it is 
still possible to compute the potential and field fluctuations as the limit of 
averages of strictly local functions. 

We then give formulas for the correlations of the potential and field at 
both neutral and charged points. We find that even in states where the 
truncated particle correlations cluster exponentially fast (Debye screening), 
the potential and electric field correlations have a very slow decay (Sections 
3-5). In Section 6, we discuss properties of the statistical distribution of the 
potential and field. There is a natural distinction between the contribution 
to the fluctuations of the nearby and the far away particles: we show that 
the latter contribution is asymptotically gaussian. Moreover, there exists a 
well-defined potential function for typical equilibrium configurations. 

These results hold in three-dimensional homogeneous phases having 
sufficiently good cluster properties. With some appropriate modifications, 
very similar results are valid in two-dimensional homogeneous phases: this 
is discussed in Ref. 12. The statistics of the electric field in one dimension is 
not studied here since it can be explicitly computed by the method of 
functional integration. (13,14) 

Crystalline phases (or phases with directional order) exhibit long-range 
order (i.e., weak clustering) in dimension g/> 2 (15t and we cannot draw any 
conclusion on the behavior of their potential and field fluctuations from the 
present analysis. 

2. SOME ELECTROSTATIC IDENTITIES 

Let Q(x) be some three-dimensional charge distribution (with 
fdxlQ(x)]  < ~ )  and V ( y ) = / d z ( 1 / l y  - zl)Q(z ) the corresponding po- 
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tential aty. For any point x, we split the potential aty into a local "inside" 
part due to the charges located inside a sphere y, R (x) of radius R centered 
at x: 

v/~n (x ; Y) =fx  dz 1 E.(~,) l Y -  zl Q ( z )  (2.1) 

and a global "outside" part due to charges in the exterior ~ ( x ) ,  of this 
sphere, 

1 V/~Ut(x; Y) = f--CR(x) 2 [y -- z[ Q ( z )  (2.2) 

We have clearly 

and in particular 

= V ; ( x , y ) +  v i  tx;y) V(y) ~ . .  .~out. (2.3) 

V ( x )  = v~n(x)+ V,~Ut(x) (2.4) 

where V]~n(x) -- V~'(x; x), (V,~Ut(x) -- V~Ut(x; x)) is the potential at x due to 
the charge inside (outside) ~] R (x). We define, moreover, 

1 fZR(x)dY V ( y )  (2.5) 

f~] rTin(out). - 1 dy vi~ ix; y) (2.6) v2(~ IE~L .(x) 

the spatial average of the total potential (resp. of v~n(x; y), v~Ut(x; y)) in 
~]R(x), [~R[ = 4~R3/3. Using the formula 

{4qrR 3 1 
fly I 3 !x I ' Ixl >~ R 

- - ( 2 . 7 )  

I<RdYl x Yl _ _~ ix12 + 2~rR2, Ix l<R 

This yields 

V/~Ut(x) = V/~Ut(x) (2.8) 

- 1 [ z - x ] 2 + ~ R  ) (2.9) 
ER(x) 

and thus, with (2.4), 

v(x) = v~n(x)- ~n(~)+ VR(~) (2.10) 

V/~Ut(x) -- -- v/~n(x) --t- VR(X ) (2.11) 

Introducing similar definitions for the electric field vector E ( x )  = - V V (x )  
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one gets in the same way the vector equation 

E(x) = E~n(x) -- E-"~n(x) + E-- R (X) 

E~Ut(x) = - E--Rn(x) + ff]R (x) 

with 

(2.12) 

(2.13) 

�9 r ( x  - z )  
E~n(x) = - ) ~  dz Q ( z ) - -  (2.t4) 

~R(x) R 3 

The interest of the identities (2.10)-(2.13) is that they express the potential 
(or field) due to charges far from x, as well as the total potential, as a sum 
of a strictly local quantity plus the spatial average VR (x). This is important 
for the following reason: if the potential fluctuations (1.8) have a thermody- 
namic limit and decay at large space separation, then VR(x) does not 
contribute to them in the limit R---> oo; cf. next proposition. Hence, by 
(2.10) the fluctuations of the potential around its average value can be 
computed locally from v]~n(x) and VRn(x). One should, however, remark 
that in an homogeneous state, limA__,R3(V~n(X))A and limA_,~(V~(X))A 
vanish because of local neutrality, but the average of the total potential 
given by 

lim ( V ( x ) )  A = lim lim ( F  R (x))  
A___) N3 R--~ co A ___> ~3 

can be different from zero when the finite system carries surface charges on 
its boundaries. 

Proposition 1, Assume that (i) the average of local functions F have 
a thermodynamic limit 

lim ( F } a =  ( F }  
A ~ N  

(ii) the thermodynamic limit W(x - y ) =  limA_,R~WA(X, y) of the potential 
fluctuations (1.8) exists, and (iii) limj~j_~ W(x) = 0. Then 

W ( x - y ) =  lim ([  v~n(x)][ l~n(y) ] )  (2.15) 
R---> oo 

and 

)/ E " = lim exp i 7k v~n(xk) lim exp i 7k[ V(Xk)]A R ~  
A--+•3 A 

(2.16) 

lim lim exp i 7k[v~Ut(xk)]A = lim exp --i  7k[V~(xk) 
R---> oo A-~R3 A R--~ oo 

(2.17) 
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with 
A . . . .  

v~n(x)  = v ] ~ n ( x ) -  v~n(x)  (2.18) 

The existence of the limits of the bulk averages involved on the 
right-hand sides of (2.15)-(2.17) will be established in the next section. 

Proof. The assumption (ii) implies that for each fixed R 

3 3 

and thus, by (iii), 

<I o (2.19) lira lim R-)oe A-)~3 L 
Introducing the decomposition (2.10) into (2.18), we have 

WA(X' Y) = <[ [/~Rn(X)]A! ~%Rn(y)]A>A 4. <[ ~Rn(X)]A[ VR(y)]A>A 
+ <[ k>A + <[ G(x)]A[ 

(2.20) 

By the Schwartz inequality, the second term of the right-hand side of (2.20) 
is less than Am 2 ~/2 ([V~(X)]A> A <[VR(y)]~)~/2. Hence, using (2.19) and that 

* in 2 <[V,~ (X)]A> A remains finite (see Lemma 1, Section 3), this term tends to 
zero as A-->R 3, R-->oc. In the same way the two last terms of the 
right-hand side of (2.20) vanish in this limit, and we get (2.15). 

To show (2.16), we use [e ix - eiy I <~ Ix - Y l ,  (2.10) and the Schwartz 
inequality to obtain 

<exp(i~k Yk[ V(Xk)]A)> A- <exp(i~k Yk [ vRn(Xk)])>A 

(2.16) follows from (2.19) when we let A---) ~3 and R--) oo. (2.17) is proven 
in the same way. �9 

Obviously, the same proposition holds for the electric field with the 
corresponding definitions of /~n(x), E~lt(x), and the assumptions (ii) and 
(iii) being replaced by (iv) ea~(x ,y )= <[Er(X)]A[E'(y)]A)A has a limit 
e~'(x - y )  as A--~ E 3 and (v) limrxr_,~e~(x) = O. 
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3, POTENTIAL FLUCTUATIONS AT NEUTRAL POINTS 

In this and the following sections, we deduce various properties of t h e  
potential fluctuations, assuming that the conditions of the Proposition 1 are 
true; i.e., we study the right-hand side of (2.15), (2.16), (2.17) for an 
infinitely extended state of the charged system. This state is described by 
the set of its correlation functions o(ql . . . . .  qn) or equivalently by the 
corresponding truncated (Ursell) functions 0r(ql . . . .  , qn) defined in the 
usual way: 

0 r(q~q2) = o(q~q2) - o(q~)o(q2) 
(3.1) 

0 r(qlq2q3) = o(q~q2q3) - o(q~)o r(q2q3) 

- 0(q2)P r(q~q3) - P(q3)o(qlq2) 

These truncated functions will have decay properties at large space separa- 
tion characterized by an index ~ such that 

irno r(ql . . . . .  qk) [  ~< C~, r = sup Ix i -  Xjl (3.2) 
ij 

The screening properties in the bulk of Coulomb states are conveniently 
expressed in terms of the excess particle density at q when  n particles are 
kept fixed at q ~ , . . . ,  q, : 

P(qql qn) 
+ ~, 8~- o(q) (3.3) o ( q l q l , . . . ,  q~) = o (q~ , . . . ,  q~) j=~ 

with 

8q~ = 8ovs(x - xj) 

We start with the basic fact (16'17) that when (3.2) holds for k < n + 2, 
then P(ql ql, �9 �9 �9 , q,) has no multipole moments of order l < ~ - 3. 

In particular, I = 0 gives the electroneutrality sum rules 

fdq e~p(q I ql . . . . .  qn) = 0 (3.4) 

In the case n = 1, this implies f dx S(x,  y ) =  0, where S(x,  y) is the bulk 
charge-charge correlation defined in terms of the infinite volume correla- 
tions as in (1.3). 

For translation invariant neutral states, i.e., S(x,  y ) =  S ( x -  y) and 
~,~e~p~ + io B = 0, local neutrality implies ( l )~n(x))=  0 and thus [l)~n(x)] 

^ .  

= V~n(x). Then, we have 

Proposition 2. If 

fdx S(x) = 0 (3.5) 

fdx Ix[ IS(x)l < ~ (3.6) 
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A .  A .  

then limR__,~( v'nR (x)V,~'n(y)) = W(x - y )  exists with 

if s(z) j <x)=-2=fdyfx+yls(y)=f+lxl-~_yf d~ i?=~ J (3.7) 

and limlxl_, = W(x) = O. 
Moreover, if 

f dx Ixl21S(x)l < ~ (3.8) 

then 

1 1 KBT 
+ = o 1 _ _ +  

where the second equality follows from the Stillinger-Lovett second mo- 
ment conditions when it holds. (ls'19) 

Before proving Proposition 2, let us make the following comments. We 
see from (3.7) that the square potential fluctuations are well defined under 
rather weak clustering conditions (3.6). However, (3.9) shows that they 
always decay as KBT/Ix I even if the clustering is exponentially fast (as in 
the Debye-Hfickel regime). The asymptotic behavior of W(x) is thus 
universal, independent of the short-range part of the interaction. This can 
also be obtained from the Sine-Gordon transformation when the latter is 
applicable.(to) 

Finally, (3.5) and (3.8) together with the space reflection invariance of 
S(x) imply that its Fourier transform S~(k) = (2~r)-3fe*kXS(x) is O([k[ 2) as 
k ~ 0 ,  and hence fdk(S(k)/[k[ 4) < oo. Under these conditions, by apply- 
ing twice the convolution theorem of Fourier transforms to the last expres- 
sion in the right-hand side of (3.7), we also have 

g(k)  
W(x) = (4~r)2 ('dk e ikx 

J Ikl 4 
(3.10) 

Proo f  o f  Propos i t ion  2. We have that 

< ~o(~) ~n(o)> _- <(v~n(x)- ~(x))(V~~ - ~ (0) )>  

is the sum of four terms which are calculated in the Appendix. The result is 
as follows. 

L e m m a  1. Under the conditions (3.5), (3.6) the following limits exist 
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and are given by 

lim ( in in - - 3 ~ f  (3.11) R+~ v~ (x) v~ (0)>- dyly+xlS(y ) 

l i m  i n  - i n  _ �9 . . . .  

= -~fayly+ xls(y)  (3.12) 

�9 i n  " i n  lim lim < in -i~ - lira lim (V~(x)V~,(O)> 

= - 2 ~ f d y  ly+ xlS(y) (3.13) 

The first expression of W(x) in (3.7) results immediately from (3.11)-(3.12); 
the second expression can be obtained either from (3.13) or shown directly 
by using charge neutrality. 

Because of electroneutrality and space reflection invariance, we can 
write 

f x (3.14) W(x) = -2vr dy(]x + y [ -  I x l - y "  * )S (y ) ,  * - Ixl 

limlxl_, ~ W(x) = 0 follows by dominated convergence from the fact that the 
integrand of (3.14) is bounded by 21y I Is(y)l and converges pointwise to 
zero as Ixl ~ ~. 

To prove (3.9) we again use electroneutrality and spherical symmetry 
to write 

IxlW(x) + ~ fI,I-<-Ixl/2dyLYI'S(Y) 

= -2~f>~,x,/fly s(y)[ ,x,(,x +y,- ix,-y.* 

- ~  ,-,+ N Y>+ 

- 2+fly+>l+l/2dyscy)[lx[(lx + y l -  ]xl)] (3.15) 

By the limited Taylor expansion, jx + y l -  I x l - y "  * = o(]yj2/jxl) for 
lyl < Ixl/2 and the integrand of the first term on the right-hand side of 
(3,15) tends pointwise to zero. Dominated convergence implies again that 
this term vanishes as Ixl-+ oo. Since the integrand of the second term is 
majorized by (1/2)[yl21S(y)l for lY] > txl/2, this contribution also vanishes 
as Ix[---> oo by (3.8), and this proves (3.9). �9 
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4. ELECTRIC FIELD FLUCTUATIONS AT NEUTRAL POINTS 

The properties of the fluctuations in the electric field can be derived in 
an analogous way as those of the potential. There is however one differ- 
ence. Since the field Er(x)  of a point particle at the origin behaves as 
.U/]x[ 2, Ix[-~0, its square has a nonintegrable singularity at the origin in 
three dimensions. We suppress this local singularity by considering ex- 
tended spherical charges with form factor ha(x ) such that f d x h ~ ( x ) =  1. 

This amounts to replacing everywhere the point charge density (1.4) by 
the smeared density Q(x)  = ~.ieaiho~(x -- Xi) -1- DB" 

Keeping the same notation as before for the charge-charge correla- 
tion, we have the following. 

Proposition 3. Under the conditions (3.5) and (3.6), 

lim (/~/~(in)(x)g/~(in)(0))= erS(X) 
R--> oo 

exists with 

erS(x)=2rrfdy 1 ( 
i ; v7  < 

and 

Moreover, if 

and 

(x + y)~ (x + y)~ ] S(y) 
(4.1) Ix +Yl [ x +yl ) 

lim er ' (x)  = 0 (4.3) 
Ixl--,o~ 

/ 1 \  
S ( x )  = O~ lxl3+t+~ ) for l = 2, . . . , n, e > 0 ,  

= ( 6rs -- 32~2s 0 1 )I + erS (x )  

k 

__ K ~ T ( 8 , . , _  32r2s )+  O( 1 ) (4.4) 
Jx? 7i ~ 

3 4 j,, ~,  err(x) = - ~  S ( y )  = (4.5) 
r = l  

where the second equality in (4.4) follows from the Stillinger-Lovett second 
moment condition. We see from (3.7) and (4.2) that the field correla- 
tions are related to those of the potential by erS(x)= - - (02/SxrOx s) W(X). 
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They have also a slow decay which takes the universal simple form 
(kT/lx[3)(8~- 32~2"). However, the spherically invariant part of the ten- 
sor er+(x) (i.e., its trace) has a faster decay when the state has strong 
clustering properties. In fact, if the clustering is exponentially fast, (4.5) 
shows that this quantity decays faster than any inverse power. Notice also 
that applying the convolution theorem to (4.2), one can as well write in 
Fourier representation 

erS(X)  = (4~r)2 f dke*~X~(k) /~" (4 .6)  
IkL ~ 

Proof of Proposition 3. One uses Lemma 2 proven in the Appendix. 

l.emma 2. Under the condition (3.5) and (3.6), the following limits 
exist and are given by 

lira ( g~(in)(x)E~(in)(o)) 
R-)oo 

= lira lim (E~in)(x)EC,(iin)(o)) 
R2-) oo R i--) oe 

~' Ix+yl Ix+yl 
lim R 2< f /~( in)(x)  f/~<in)(0) > 

R---) oo 

+; 
= - ~  dylx+yl g,+ Ix+y1 Ix+y[ 

Equations (4.1) and (4.2) result immediately from (4.7) and from the fact 
that <l ; :f~) (/)12> '/2 being now O(1/R) by (4.8) does not contribute to the 
limit. Moreover, 

]erS(x)l < 8r f dy ~ 1  lS(y)[ 

tends to zero as Ix[--+ oo. (4.5) follows from the fact that all multipole 
moments of S(x) up to order n exist and vanish because of etectroneutrality 
and spherical symmetry. Hence, only the second term in the integral (4.7) 
contributes to the asymptotic form of e=(x). Using again electroneutrality 
and spherical symmetry we find (see Lemma 1 of Ref. 16) 

lim ]xl3erS(x) = - ~  lim [x[a28/j ~ dy y~iS(y) 

=(a,.,-3*r*')[--~- fdylA2S(y)] [] 
To conclude this section, we show that we can recover the result of 
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Ref. 20 that the charge fluctuations ( Q 2 )  in a sphere of radius R behaves 
as the surface of this sphere. This is an immediate consequence of Gauss '  
theorem and of the properties of the field fluctuations. By Gauss '  theorem 
and (4.6), we find 

3 
(Q~) _ 1 • ~, do~( dof (Er(x)ES(y)) 
4~rR 2 (4~r)3R 2 r,s.qx =R JFyl=,x 

1 ('dkS(k) ( eik.Xl~.do 
47rR 2 J2Jlx lk[  I=R 

The first term on the right-hand side of (4.9) converges to 

2~ f ak S(k) 
Ikl 4 

by the Riemann Lebesgue lemma [provided that S(k)/Ikl 4 is integrable]. 
The other terms tend to zero because of the estimate 

S ( k )  sinlklR 
f dk Ik[ 4 [kin 

Thus 

lim (Q~-) - 2~f  dk ff(~) - 
R~oo 4~rR 2 [k[ 

which is the result of Ref. 20. 

IS(k)] 1 f d k  IS(k)] 
< flkl < d k - - ~  + -~ Ikl 4 

1 fdx  [xlg(x ) 
4 

5. POTENTIAL AND FIELD FLUCTUATIONS 
AT A CHARGED PARTICLE 

In the preceding sections, w e  have investigated the properties of the 
fluctuations at a point x in space. It  is also important in various physical 
situations (such as the spectral broadening problem (1)) to know the effects 
of the field fluctuations on a charged particle of type a o at x 0 in the system. 
Our previous results can easily be extended to this case by computing the 
potential and field fluctuations at x 0 in the state ( �9 �9 �9 )0 with correlations 

O( qoql . . .  qn) 
oo(q  . . .  qo) = o(qo)  ' qo = ( o,Xo) (5 .1)  

conditioned by the presence of a partical of type a o at x o. 
If Po(q[ ql �9 �9 �9 q,) denotes, as in (3.3), the excess particle density at q in 
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the state ( . .  �9 )0, we obta in  immedia te ly  that  0o(q[ql  . . .  qk) satisfy the 
/-mult ipole sum rules for k = 1 . . . . .  n - 1 whenever  the same is true for 
o(ql  ql �9 �9 �9 qk), k = 1 . . . . .  n. This follows f rom the identity 

Oo(q[q~ . . .  q=) = o(qjqoq~ . . .  q=) - P (q lqo)  (5.2) 

Moreover ,  the two-point  t runcated functions o~(q~q2) in the condi- 
t ioned state ( �9 �9 �9 )0 can be writ ten as 

or (qoq ,q2)  o r ( q o q l )  O r(q0q2) 
pr (q ,q2 )  = O r(qlq2) + O(qo) O(qo) O(qo) (5.3) 

More  generally, the higher-order  t runcated correlations of the state ( �9 �9 �9 )o 
can be expressed as 

or(q1  - . .  q,) = 0 r ( q l  . . .  q=) + S (qoq ,  . . .  q=) (5.4) 

where S(qoq  1 . . .  q=) is a sum of products  (up to density factors O(qo)) of 
t runcated functions o r ( q o q i . . ,  qQ) where the arguments  {q6 " ' "  qi,o} 
c {ql . .  �9 q=) occur always in conjunct ion with q0- 

Unde r  the assumpt ion  of S l-clustering (i.e., f d q l . . ,  dq=]#r(qoq 1 
. . . q=)J < m )  we see f rom (5.3) and  (5.4) that  the or(q1 . . . q=) differ f rom 

the p r (q  1 . . .  q=) by  a te rm which is joint ly integrable in all variables 
q l . . .  q=. As a consequence,  the covergence p rob lems  occurring in the 
definition of the potent ial  and  field f luctuations at a charged point  are 
reduced to those which have  been treated in the previous sections. We  shall 
therefore not  reproduce  the proofs  for this case, bu t  only give some relevant 
formulas,  setting O(qo) = O~0 and x o = 0. 

We  first note that  now (V~n(0))o at x 0 -- 0 is different f rom zero 

lim {v/~n(0))o= lira [" dqe~(  1 Jx[ 2 3 ) 
R~oo R-*oo -/Ix[< R ~ ~ + 2R  3 2R Oo(q) 

_ 1 t. d e~ Or" ,%0)  (5.5)  
O~oJ q ~  tq 

Under  the assumpt ion  of . f  1-clustering, (3.5) and  (3.6), we prove as in 
Proposi t ion 2 the existence of the potential  fluctuations, using (5.3): 

lim ((v~n(0))2)0= •(0) + ~o dq - ~  o r ( q 1 % 0  ) 
R--~ oo 

l(@~(aq~j J co, % 
- -  ix~l iXzl pr (q lq2 , •oO ) (5.6) + 
IOa0 

with W(0) given by (3.7). 
To  compute  the electric field f luctuations at a charged particle, we 
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consider first spherical extended charges with form factors h~(x). The 
(smeared) field at the origin due to a particle of type c~ at x is 

__1 
E~(O,q) = e~,o F(qo,q), where q = (c~,x), q0 = ( % , 0 )  

F(q, ,q2)= e~,%fdzlfdz2h~,(z,- Xl) (Zl - Z2) IZl - z2f ~ ho~(~2 - x~) 

is the electric force between two charges at ql and q2. 
By spherical symmetry (Er(O)) = 0, and according to (5.3), we have 

(E  ~ (0)E" (0))o = f dqaf dq, E" (0, q2) E~ (0, q,) 

1 [pr(q,q2qo)+ 6q,q20(q,qo)]) (5.7) x {oT(q+)+ 

- l fdq2E'(O, q2)fdq, Fr(qo,ql ) 
0a0e~o 

x {o(q,qzqo) - o(qOP(q2qo) + 6q,q20(q~qo)} (5.8) 

To obtain (5.8), we used (3.1) and the first BGY equilibrium equation (for a 
homogeneous state) 

f dql f(qo,  ql)o r(q0ql) -- KB TVoo(qo) = 0 

Equation (5.8) can be further simplified by using the second BGY equation 

f dq, F(qo, ql)(O(qoq,q2) - O(ql),o(qoq2)) + F(qo, qz),O(qoq2) 

= kB TVoO(qoq2) = -- Ke TV2p r(q0q2) 

to obtain an expression involving only two-point correlations 

(E~(O)ES(O)) ~ = K~ r f d q  E S (0, q)Vr0 r(qq0 ) (5.9) 
P,~oe ~o 

After an integration by part and using Poisson's equation (5.9) leads to 
3 

2 ~[Er(0)12~0 = a,~KBT (5.10) 

It is interesting to see that for a system of positive ions embedded in a 
uniform background of charge density 08 (0B < 0) the right-hand side of 
(5.10) has a universal value. This is due to the fact that in this case, we can 
deal with point particles (no collapse) and that correlations vanish at 
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coincident points because of the repulsive interactions between ions. In- 
deed, setting h~o(Z) = ha(z ) = 6(z) in (5.10), we get 

3 4qrK B T 
E ([E~(O)]2}o =- ~e~or(aO,  ao O) 

r = 1 P~oe% 

- 4~rKsT ~.O~= 4~r IPBIKB-------~T (5.11) 
e~o ~ e~o 

This exact value of the second moment of the field has been used in Ref. 9 
to compute the microfield distribution approximately. 

6. DISTRIBUTION OF THE POTENTIAL AND FIELD 

In the previous sections we gave explicit formulas for the second 
moment of the potential and field distribution. It is of interest in relation to 
the line shape problem to have informations on higher-order moments as 
well as on the full distribution of these quantities. 

According to the splitting introduced in Section 2, the potential fluctu- 
ations are due to both V~n(x) and V~Ut(x). The statistical distribution of 
V~n(x) has apparently no simple properties since it is affected by the local 
correlations of the particles around x. 

The next proposition shows however that a central limit theorem holds 
for the distribution of V~Ut(x): the fluctuations due to the particles far from 
x [i.e., outside of any finite sphere ~] R(x)] are asymptotically Gaussian as 
R ~ ~ .  In view of Proposition 1 and (2.17), it is sufficient to determine the 
statistical properties of V~n(x), and we have the following. 

Proposition 4. Assume that (3.2) holds with ~/> 3 for k = 2, 3, 4 and 

fdXl Ix,I IO r(a~x, ; a20)l < 

f dql . . .  dq._, IO r(q, . . .  q._,, a.0)l < ~ ( f ' c l u s t e r i n g )  

Then v~'n(xl) ' VWXR ~ 2J, ~ " �9 . , are jointly Gaussian as R -~ ~ with covariance 

W~ -- - w f d y  ix+  y l S ( y )  (6.1) 

This is just half of the covariance (3.7) of the full potential fluctuation. 

Proof. The proof is similar to that given in Proposition 4 of Ref. 20 
for the charge fluctuations. We show that all the cumulants of the distribu- 
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tion of Vm( x "l R k 1~ 

j = l  

> E e~ . . .e~.~r(aly, . . . . .  a~yn) 
C~l " �9 �9 ~ n  

with fR(X) = (x2/2R 3 - 3/2R)XR(x ), vanish as R - ~  cr except for n = 2 
[remember that M(RO(x) = (F~n(x)> = 0 by neutrality]. For  the definitions 
of the cumulants  and  of the t3r(ql . . .  qn), see Ref. 20. 

Since [fR(x)[ ~< M/R,  we get 

[M(n)(xl . . .  Xn) ] 

< (M)"_~_R3(sup[e~])"fdql..  " dq,_,]pr(q, . . .q,_, ,%0)[ 

which vanishes as R ~  oo when n > 3. After the change of variables 

Yl - Y 3  = u, Y2 - Y 3  = v and Y3 = Ry, we get 

M(R3)(XIX2X3) = ( d u ~ d v  E ea,ea2ea3 ~ T(alU, a2v, a3 O) 
, I  . /  Ot 1 ~20~ 3 

- 

• dy f, ty  + 

(6.2) 

The term in the brackets, [ �9 �9 �9 ], in (6.2) is uniformly bounded  in R, u and 
v and  converges to a = fdy [ f l (y)]  3 as R -~ ~ .  Thus we find 

lim M3R(XlX2X3)= a ~ e ~ f  dql f  dq2e~e~fiT(ql,q2,a30) 
R - - > ~  a 3  

Under  our  clustering assumptions, the electroneutrality sum rule (3.4) holds 
for n = 3 (16) implying fdql e~f 7(qlq2q3) = 0 (see L e m m a  2 in Ref. 20), and 
hence 

lim M(3)(xIx2x3) = 0 
R - - ~  

Finally 

W~ = lim M(R2)(X, 0) = lira (V~n(x) V~n(0)> 
R---> ~ R ~ o r  

has been calculated in L e m m a  1. I I  
Let us remark that the distribution of V~ at a charged point  is also 

Gaussian with the same covariance (6.1), i.e., Proposit ion 4 holds without 
modificat ions for the state ( �9 �9 �9 >0. This follows f rom the fact that using 
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(5.3) and (5.4) 

<[ ~/~n(0 ) in>0 = <[ ~/~n(0 ) in> n t- ~l x e/~ ( Ix]2 3 )n L <-gd q n _ . _ ~ + ~  S(qoq~ . . .q~)  

_ .  n l = <[ v/~n(0)] > "4- O ( ~ )  

We can, as for the potential, consider the distribution of the field E/~Ut(x) 
due to the far away particles. Here, because of the faster decay of the field, 
the local effects on the fluctuations of the particles outside of the sphere 
~R(X) vanish as l /R ,  R ~  ~ [see (4.8) in Lemma 3]. However, we have 
still a central limit theorem for the scaled field REbUt(x). 

Proposition 5. Under the same assumptions as in Proposition 4, 
RE~(in)(x) are jointly Gaussian as R ~ ce with covariance given by (4.8). 

In view of (2.14), the proof is the same as that of Proposition 3 with 
fR (x) equal to (x r /R 3)X R (x). 

A more detailed question that we can ask for the charged system is the 
following: what are the potential and field at x due to a typical configura- 
tion of the particles? In other words, are the total potential and field well 
defined random variables in an equilibrium state of the infinite system? The 
problem was considered and solved in Ref. 14 for the one-dimensional 
Coulomb system. 

If d/~r denotes the equilibrium measure corresponding to the correla- 
tion functions o(q~ . . .  q,,), the next lemma shows that we can define a 
potential function on the phase space of the infinitely extended system up 
to null sets with respect to d/xr 

Lemma 3. Assume that (Y5), (3.6), and (3.2) hold with ~ > 2. Then 
A. 

lira V]~n(x)= V(x) 
R - ~  o e  

exists in ~z ~ 1 (d/z~). 

Proof. Since d/~ has a finite total mass (i.e., fdlxt~ = 1) it is sufficient 
to prove the covergence of l)~"(x) in J2(dlzB). We first show that I~n(x) 
converges weakly in S 2 ( d ~ ) .  For this we consider the dense set _~ of 
strictly local functions in S 2 ( d / ~ )  (a local function depends only on the 
coordinates of the particles located in some finite region of R3). From the A. 
definition of vCn(x) and F E 5~ we have 

A f ( I__L__ Ix-yl 2 
<v]~n(x)F> = d y x R ( y -  x) [y xl + 2R 3 

X [< Q(y)F)  - < Q(y))<F>] 

In (6.3) the neutrality condition (Q(.v))  = 0 has been used. 

2R) 
(6.3) 
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Since Ily[2/2R 3 -  3 / 2 R 1 -  O(1/lyl), lyl ~ R, and (Q(y)F)-  
(Q(y ) ) (F )  = O(1/lyln), n > 2, by the clustering assumption, we obtain 
by dominated convergence that 

lim (l))~n(x)F)=fdY]xl-~_y[(Q(y)F) (6.4) 

for all local functions F in ~ .  
Since the norm ((l)~n(x)) 2) remains uniformly bounded as R ~ m (see 

Proposition 2), the weak convergence (6.4) can be extended from ~ to the 
whole of j 2  (d/z~). 

Hence there exists a function V(x) in oz~162 such that V(x)= w - 
lim V~"(x); V(x) is defined by the right-hand side of (6.4). Lemma 1 shows 
that 

lira (v~n(x) V ( x ) )  = lim lim (/)'~n(x) I)R,(X )) 
R--->oz R2"-+~ RI---~ 

"~'" 2 

implying lim,__,~([ I)~n(x) -- V(X)] 2) = 0, i.e., l)~"(x) converges strongly to 
V(x) in _f2(d/~) ,  and hence in J l ( d # r  [] 

We remark that the limiting function V(x) defined by (6.4) is the usual 
Coulomb potential when interpreted in the sense of weak convergence. 

However, the S 1 convergence of l)'~"(x) gives us information on the 
typical configurations in the equilibrium .state represented by the Gibbs 
measure d/~/~. The S 1 convergence of v~n(x) implies that there exists a 
subsequence { R, ) such that 

[ Ix - x,I 2 
lira ~ % [ [ x ~ l + - -  

" - ~  [x,l<R~ \ xi] 2R3 

for almost all configurations (%,  xi) i. 

3 ]-- V(x) (6.5) 
2R ! 

In this way, we can in principle calculate the potential at x due to a 
typical infinite configuration of charged particles, up to a constant (see the 
remarks in Section 2 before the Proposition 1). As a consequence of 
Lemma 3, we obtain immediately the existence of a limiting generating 
function (2.16) 

( I  " ]/ lim exp i~7~V]~n(xk = exp i 7~V(xk) 
R~,oo k 

[This, however, does not prove the existence of a unique probability 
distribution for V(x) or that of higher-order moments (V(xl )  . . .  V(xk)), 
k > 2 . l  

We have the analog of the Lemma 3 for the field: there exists an 
electric vector field Er(x) on the phase space of the infinite system. Er(x) is 
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defined up to null sets with respect to the Gibbs measure d/~ B and corre- 
sponds in the weak sense to the usual electric field function. 

Lemma 4. Assume that (3.5), (3.6), and (3.2) with B > 1 hold true. 
Then limR_~/~(in)(x) = Er(x) exists in S I (d~n). 

The proof is analogous to that of Lemma 3. 

7, C O N C L U D I N G  R E M A R K S  

Our whole analysis was based on the assumption of the existence of 
the thermodynamic limit for the potential and field fluctuations [assump- 
tions (i), (ii), and (iii) of Proposition 1]. 

As concluding remarks, we present an argument suggested by Alastuey 
and Jancovici for the existence of these limits. We take for A a sphere of 
radius R 0 and assume that the finite volume charge-charge correlation 
SRo(X, y) and its bulk limit S(x  - y) = limRo__,~SRo(X, y) obey an estimate 
of the following structure: 

ISRo(X,y) - S (x  -Y)I  < f ( x  - y ) g ( R  o - Ixl) (7.1) 

with 

f dxlxllf(x)l< ~ ,  fo~drrlg(r) l< ~ (7.2) 

In ( 7 . 1 ) f ( x - y )  takes into account that both SRo(X, y) and S(x - y )  are 
small as i x - Y l  is large (clustering), g(R o - I x l )  insures that SR0(x, y) is 
close to S(x - y )  when x or y (since f is short ranged) are far from the 
boundary. 

Using the neutrality (1.6), the potential fluctuations at the origin 
x = y  = 0 can be written as 

dx 1 1 

and thus, with (7.1), (7.2), 

'[  Ixl i< lY xl Ixl 

1 
Ixl ) s o(x'y) 

< 4WMfoROd r [g(rR~-~ r)[ 
Iq(r)l 

4WM )oR~162 ( R o - r) + 1 

(7.3) 

1 O( o) 
(7.4) 
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In obtaining (7.4) we have used the fact that the bracket in (7.3) is O(1/[xl) 
as [x]-~0 and O(1/Ixl 2) as [ x ] ~ m ;  it is therefore bounded by M~ 
Ixl(Ixl + l), M being a constant. 

Thus we find from (7.2) and the result of the Appendix [see (A13)] 

W(0) = lim WRo(0,0) 
Ro--~ oo 

( ( 1(1 1)six_y ) lira d3xj, Ro dy-~ ly[ Ixl R o ~  J[xl <~ Ro y < 

= - 2~fdx I xIS(x) (7.5) 

recovering thus the expression (3.7). This shows that an estimate of type 
(7.1), (7.2), together with neutrality insure the finiteness of the potential 
fluctuations in three dimensions. 

One should note that the situation is different in two dimensions. If 
one replaces 1/]x I by -ln[x[ in (7.3), (7.4), one sees easily that one obtains 
only a bound O(lnR0) in (7.4). This indicates that two-dimensional poten- 
tial fluctuations diverge, a fact which can be established in the two- 
dimensional OCP at F = 2. (12) 
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A P P E N D I X  

Proof of  Lemma 1. 
ties to be evaluated in (3.11), (3.12) are, for x = 0, 

a, f l =  1,2 

with 

According to (2.18), (2.1), and (2.9), the quanti- 

(A1) 

1 f Z ( x ) =  - ~x, + 3 (A2) 
f ~ ' ( x ) - I x [ '  2R3 2R 

The general case will be obtained by substituting the translated function 
S(x~ - Y l  + x) in the final result. 

Changing the variables Y] = x ~ -  u, x 1 = Rv and using the scaling 
properties of the functions f,~(x), (A1) can be written in the form 

A " P =  n~lim f aus(u)[ c;~B(u)- C~fl(bl)]X2n(U) (a3) 
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with 

= ) ( a 4 )  

( ( c, 12 a t )  t~ = - )/,( - ) 

ycR ( x )  = 1 - xR ( x )  

Notice that the integrand in (A1) vanishes if Ix1[ > R or ]x2] > R, and 
hence if [u[ > Ix1 - x21 > 2R. 

An explicit integration leads to 

[4~rR - ?~rlu[, [ul-4< R 

C~ ~ (u) = j 2~___R 2 (A6) 
[ in I [uj > R 

~rlu[= ~- lu i  4 
~ R  R 10 R 3 ' 

+ lul R 

c~ '(u) = 8~ R 2 
5 lul ' lu[ >1 R 

c,~2(u)_ 5~R ~lul = (A7) 
2 R 

C~2(u)_ 68vR 4~r lu[ 2 
35 5 R 

The conditions (3.5), (3.6) imply 

lim R~ duS(u) = lim R( duS(u) 
R--->oo u < 2 R  R-->o~ Jlu >~2R 

< lira (" an lul IS(u)l = o (A8) 
R ~oo .)lut >~ 2R 

and by dominated convergence 

l i m ~  duS(u) [u~[R =O 
R--~ oo lu[ < 2 R  

Thus we find 

f { -2~fdulutS(u ), a = 1 3 =  1 (A9) lira du S(u) C~ B (u)X2R (u) = 
R-~ ~ 0, otherwise 

To evaluate the contribution of C ~ ( u )  to (A3), we consider first the case 
where [u I t> R/4. One finds from (A6) that 

f f ? (  U )  .~ c l l ( u ) =  O( lub ,  lul >-- R [C'~(u)l < R dvx,(v)f)(v) v -  ~ ~ , 
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and also that CA2(u) and C~2(u) are O(lu[) for ]u[/> R/4. Thus 

lim JR ( duC~l~(u)S(u) <<" M lim f~ dulullS(u)l=O 
R-->~ /4<lul<2R R ~  R/4<lul 

(A10) 

Consider now the case where [u I < R/4. In the integrand of (A5) we have 
a l w a y s  Iv[ ~< l,  iv - u / R I  ~> 1, h e n c e  Iv - ~[ < [ u I / R  < 1 / 4  and  iv - e - 
u/R  I < 2[ul/R < 1/2, ~3 = v]v]. For v,u lying in this domain, a limited 
Taylor expansion around v = ~3 yields 

f ~ ( v ) fB (v -  u / R ) =  1 + O(]ul/R ) (Al l )  

For each fixed u we have that fdVXl(V)21(v -- u /R)  is O(1) and tends to 
zero as R---> ce. Moreover, Rfdvxl(v)xl(v - u /R)  is O(lu]) and 

Therefore, with this and (A11), we find again by dominated converge that 

lim flu du&B(u)S(u)= ~f aululS(u) (A12) 

Combining (A9), (A10), (A12), in (A3) leads to the result (3.11), (3.12) of 
the lemma. 

Taking first the limit R 1 ---> m in (v,~n(0) V~](0)), (V~(0) vAn(0)) . . . . .  
we see that the double limit is given by the first term of (A3). Therefore 
(3.13) follows immediately from (A9). This concludes the proof of the 
lemma. �9 

In view of (3.11), to establish (7.5) it is sufficient to show that 

= lim [ - 4 ~ r R (  du S(u) 
R---~oo [ Jlu[-.<< 2R 

= ~ fdx  IxlS(x) (A13) 

Indeed the first term of (A13) tends to zero as in (A8) and the second 
term gives the same results as (A12) by the same arguments. 

Proof of Lomma 2. Proceeding as in Lemma 1, we write 

�9 - ( (  x"  ( x  - u/x~, (x)x~(x  - u) (ER( lla )(0)EJ~(2ln)(0)) = j u s ( u ) j x l ~ l ~  I~ ul ~ 
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For fixed u, the x integral is absolutely convergent as R 1 --~ oo, R2-~ oo (or 
R I =  R 2 =  R--->oc) and tends to (2~r/lul)(Sr,-~r~s). Moreover, it is 
majorized by 

1 1 _ r; f o ~ 1 7 6  1 f dx 
ixl  t -.L _ , 

Hence. (4.7) follows by dominated convergence. We get from (2.14) 

with 

R 2(E/~(in)(0)Ej~(in,(0)5 = ; dx I ; dy I S ( x  1 -- y ,)XR (Xl)XR (Yl)  
R 4 

= f d H  S(U)[ d~ s (H) -- ~ s  (U)]X2R (U) (A14) 

= _ u )s  4 ~  d;~'(u) R f d v x , ( v ) v " ( v  ~ ='-~RSr,  

_ _ U)vr( _ . ;  

The first term in (A14) does not contribute because of electroneutrality. For 
the second term. we have 

Sr s ( u ) =  O( I _ ~ ) =  O(,u,) (since ,u[ < 2R) 

and 

1 ~ [u. dovlVrv s 7r (8,., + ~r~s)]u I lim d~ s ( u ) =  ~ = -~ 
R--)oo 2(1) 

II where ~ ( 1 )  is the surface of the unit sphere. This leads to (4.8). 
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